Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
2.
J Steroid Biochem Mol Biol ; 239: 106483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369033

RESUMO

Beauvericin (BEA) is a cyclic depsipeptide secondary metabolite of Fusarium species. It causes chemical hazards in food products and exists in an environment containing soil and various food types. On the other hand, the purified BEA has various biological activities and is regarded as a potential candidate for pharmaceutical research. This study was performed to assess the anti-proliferation activity of BEA against human breast cancer cells by regulating the estrogen receptor-alpha (ERα)/p38 pathway. TA and BA assays verified that BEA is a completed ER antagonist. Additionally, BEA suppressed cell proliferation in the anti-proliferation assay involving ER-positive human breast cancer cells co-treated with BPA and BEA. In respect to an anti-proliferation activity, the BPA-induced phosphorylation of p38 protein was inhibited in the presence of BEA. These results suggested that BEA exerts inhibitory potentials on endocrine disrupting effect and possibly acts as a natural therapeutic material for human estrogen hormonal health.


Assuntos
Compostos Benzidrílicos , Neoplasias da Mama , Depsipeptídeos , Fusarium , Fenóis , Humanos , Feminino , Receptor alfa de Estrogênio/metabolismo , Fusarium/metabolismo , Neoplasias da Mama/tratamento farmacológico , Depsipeptídeos/farmacologia , Depsipeptídeos/metabolismo , Proliferação de Células , Linhagem Celular , Linhagem Celular Tumoral
3.
PLoS One ; 19(1): e0295629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277404

RESUMO

Targeted therapies for inhibiting the growth of cancer cells or inducing apoptosis are urgently needed for effective rhabdomyosarcoma (RMS) treatment. However, identifying cancer-targeting compounds with few side effects, among the many potential compounds, is expensive and time-consuming. A computational approach to reduce the number of potential candidate drugs can facilitate the discovery of attractive lead compounds. To address this and obtain reliable predictions of novel cell-line-specific drugs, we apply prediction models that have the potential to improve drug discovery approaches for RMS treatment. The results of two prediction models were ensemble and validated via in vitro experiments. The computational models were trained using data extracted from the Genomics of Drug Sensitivity in Cancer database and tested on two RMS cell lines to select potential RMS drug candidates. Among 235 candidate drugs, 22 were selected following the result of the computational approach, and three candidate drugs were identified (NSC207895, vorinostat, and belinostat) that showed selective effectiveness in RMS cell lines in vitro via the induction of apoptosis. Our in vitro experiments have demonstrated that our proposed methods can effectively identify and repurpose drugs for treating RMS.


Assuntos
Rabdomiossarcoma , Humanos , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/metabolismo , Apoptose , Genômica , Resultado do Tratamento
4.
Chem Biol Interact ; 378: 110489, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059213

RESUMO

We assessed the mechanism of human androgen receptor-mediated endocrine-disrupting effect by a triazole fungicide, metconazole in this study. The internationally validated stably transfected transactivation (STTA) in vitro assay, which was established for determination of a human androgen receptor (AR) agonist/antagonist by using 22Rv1/MMTV_GR-KO cell line, alongside an in vitro reporter-gene assay to confirm AR homodimerization was used. The STTA in vitro assay results showed that metconazole is a true AR antagonist. Furthermore, the results from the in vitro reporter-gene assay and western blotting showed that metconazole blocks the nuclear transfer of cytoplasmic AR proteins by suppressing the homodimerization of AR. These results suggest that metconazole can be considered to have an AR-mediated endocrine-disrupting effect. Additionally, the evidence from this study might help identify the endocrine-disrupting mechanism of triazole fungicides containing a phenyl ring.


Assuntos
Antagonistas de Receptores de Andrógenos , Disruptores Endócrinos , Fungicidas Industriais , Multimerização Proteica , Receptores Androgênicos , Ativação Transcricional , Triazóis , Triazóis/química , Triazóis/toxicidade , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Multimerização Proteica/efeitos dos fármacos , Humanos , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/toxicidade , Linhagem Celular Tumoral , Ativação Transcricional/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/toxicidade
5.
Environ Pollut ; 318: 120894, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549450

RESUMO

We selected azole pesticides products that are managed by setting maximum residue limits (MRLs) in the Republic of Korea and describe the estrogen receptor (ER) α-related negative effect to endocrine system using in vitro Organization for Economic Cooperation and Development performance-based test guideline. No azoles were found to be an ERα agonist. Conversely, three azoles (bitertanol, cafenstrole, and tebufenpyrad) were determined to be ERα antagonists. In addition, the ERα antagonistic activities of bitertanol, cafenstrole, and tebufenpyrad were not significantly perturbed in the existence of phase I (hydroxylation, dealkylation, oxidation or reduction) and phase II (conjugation). Regarding the mechanism underlying their ERα-mediated endocrine disrupting potentials, ERα proteins cannot be translocated to the nucleus by suppressing the dimerization of ERα in the cytoplasm by bitertanol, cafenstrole, and tebufenpyrad. These data indicated that azole pesticide products show the capability to interfere the ERα-related human endocrine system. Furthermore, we identified the mechanism of ERα-mediated endocrine disrupting by azole insecticide products through this study.


Assuntos
Receptor alfa de Estrogênio , Praguicidas , Humanos , Receptor alfa de Estrogênio/metabolismo , Dimerização , Azóis/toxicidade , Receptores de Estrogênio/metabolismo , Sistema Endócrino , Receptor beta de Estrogênio/metabolismo
6.
Ecotoxicol Environ Saf ; 247: 114246, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332405

RESUMO

Several pesticides widely used in agriculture have been considered to be endocrine disrupting chemicals through their binding affinities to estrogen or androgen receptors. This study was conducted to clarify the human androgen receptor (hAR)-mediated genomic endocrine disrupting mechanism of eight selected pesticide products by in vitro assay providing the Organization for Economic Co-operation and Development Test Guideline No. 458, 22Rv1/MMTV_GR-KO AR transcriptional activation assay and a homo-dimerization confirmation assay. None of the tested pesticide products showed an AR agonistic effect, whereas they were all determined to be AR antagonists at non-toxic concentrations. Also, the eight pesticide products were verified as true AR antagonists through a specificity control test. In the Bioluminescence Resonance Energy Transfer-based AR homo-dimerization confirmation assay, the eight pesticide products did not induce AR homo-dimerization. Additionally, western blotting revealed that none of the eight pesticide products induced AR translocation from the cytoplasm to the nucleus. In conclusion, we found for the first-time evidence to understand the AR-mediated endocrine disrupting mechanisms induced by selected azole and organophosphorus pesticide products.


Assuntos
Praguicidas , Receptores Androgênicos , Humanos , Receptores Androgênicos/genética , Dimerização , Compostos Organofosforados/toxicidade , Azóis , Praguicidas/toxicidade , Genômica
7.
J Cachexia Sarcopenia Muscle ; 13(6): 3062-3077, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36221153

RESUMO

BACKGROUND: Skeletal muscle atrophy can occur in response to numerous factors, such as ageing and certain medications, and produces a major socio-economic burden. At present, there are no approved drugs for treating skeletal muscle atrophy. Arachidonate 5-lipoxygenase (Alox5) is a drug target for a number of diseases. However, pharmacological targeting of Alox5, and its role in skeletal muscle atrophy, is unclear. METHODS: The potential effects of gene knockdown and pharmacological targeting of Alox5 on skeletal muscle atrophy were investigated using cell-based models, animal models and human skeletal muscle primary cells. Malotilate, a clinically safe drug developed for enhancing liver regeneration and Alox5 inhibitor, was investigated as a repurposing candidate. Mechanism(s) of action in skeletal muscle atrophy was assessed by measuring the expression level or activation status of key regulatory pathways and validated using gene knockdown and RNA sequencing. RESULTS: Myotubes treated with the atrophy-inducing glucocorticoid, dexamethasone, were protected from catabolic responses by treatment with malotilate (+41.29%, P < 0.01). Similar anti-atrophy effects were achieved by gene knockdown of Alox5 (+30.4%, P < 0.05). Malotilate produced anti-atrophy effects without affecting the myogenic differentiation programme. In an in vivo model of skeletal muscle atrophy, malotilate treatment preserved muscle force/strength (grip strength: +35.72%, latency to fall: +553.1%, P < 0.05), increased mass and fibre cross-sectional area (quadriceps: +23.72%, soleus: +33.3%, P < 0.01) and down-regulated atrogene expression (Atrogin-1: -61.58%, Murf-1: -66.06%, P < 0.01). Similar, beneficial effects of malotilate treatment were observed in an ageing muscle model, which also showed the preservation of fast-twitch fibres (Type 2a: +56.48%, Type 2b: +37.32%, P < 0.01). Leukotriene B4, a product of Alox5 activity with inflammatory and catabolic functions, was found to be elevated in skeletal muscle undergoing atrophy (quadriceps: +224.4%, P < 0.001). Cellular transcriptome analysis showed that targeting Alox5 up-regulated biological processes regulating organogenesis and increased the expression of insulin-like growth factor-1, a key anti-atrophy hormone (+226.5%, P < 0.05). Interestingly, these effects were restricted to the atrophy condition and not observed in normal skeletal muscle cultures with Alox5 inhibition. Human myotubes were also protected from atrophy by pharmacological targeting of Alox5 (+23.68%, P < 0.05). CONCLUSIONS: These results shed new light on novel drug targets and mechanisms underpinning skeletal muscle atrophy. Alox5 is a regulator and drug target for muscle atrophy, and malotilate is an attractive compound for repurposing studies to treat this disease.


Assuntos
Fator de Crescimento Insulin-Like I , Atrofia Muscular , Animais , Humanos , Araquidonato 5-Lipoxigenase/genética , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Inibidores de Lipoxigenase , Organogênese
8.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207247

RESUMO

The relationship between expression of aging-related genes in normal tissues and cancer patient survival has not been assessed. We developed a genome-wide transcriptomic analysis approach for normal tissues adjacent to the tumor to identify aging-related transcripts associated with survival outcome, and applied it to 12 cancer types. As a result, five aging-related genes (DUSP22, MAPK14, MAPKAPK3, STAT1, and VCP) in normal tissues were found to be significantly associated with a worse survival outcome in patients with renal cell carcinoma (RCC). This computational approach was investigated using nontumorigenic immune cells purified from young and aged mice. Aged immune cells showed upregulated expression of all five aging-related genes and promoted RCC invasion compared to young immune cells. Further studies revealed DUSP22 as a regulator and druggable target of metastasis. DUSP22 gene knockdown reduced RCC invasion and the small molecule inhibitor BML-260 prevented RCC dissemination in a tumor/immune cell xenograft model. Overall, these results demonstrate that deciphering the relationship between aging-related gene expression in normal tissues and cancer patient survival can provide new prognostic markers, regulators of tumorigenesis and novel targets for drug development.

9.
PLoS One ; 16(5): e0252135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038481

RESUMO

Skeletal muscle atrophy is a feature of aging (termed sarcopenia) and various diseases, such as cancer and kidney failure. Effective drug treatment options for muscle atrophy are lacking. The tapeworm medication, niclosamide is being assessed for repurposing to treat numerous diseases, including end-stage cancer metastasis and hepatic steatosis. In this study, we investigated the potential of niclosamide as a repurposing drug for muscle atrophy. In a myotube atrophy model using the glucocorticoid, dexamethasone, niclosamide did not prevent the reduction in myotube diameter or the decreased expression of phosphorylated FOXO3a, which upregulates the ubiquitin-proteasome pathway of muscle catabolism. Treatment of normal myotubes with niclosamide did not activate mTOR, a major regulator of muscle protein synthesis, and increased the expression of atrogin-1, which is induced in catabolic states. Niclosamide treatment also inhibited myogenesis in muscle precursor cells, enhanced the expression of myoblast markers Pax7 and Myf5, and downregulated the expression of differentiation markers MyoD, MyoG and Myh2. In an animal model of muscle atrophy, niclosamide did not improve muscle mass, grip strength or muscle fiber cross-sectional area. Muscle atrophy is also feature of cancer cachexia. IC50 analyses indicated that niclosamide was more cytotoxic for myoblasts than cancer cells. In addition, niclosamide did not suppress the induction of iNOS, a key mediator of atrophy, in an in vitro model of cancer cachexia and did not rescue myotube diameter. Overall, these results suggest that niclosamide may not be a suitable repurposing drug for glucocorticoid-induced skeletal muscle atrophy or cancer cachexia. Nevertheless, niclosamide may be employed as a compound to study mechanisms regulating myogenesis and catabolic pathways in skeletal muscle.


Assuntos
Reposicionamento de Medicamentos/métodos , Atrofia Muscular/tratamento farmacológico , Niclosamida/uso terapêutico , Células A549 , Animais , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Linhagem Celular Tumoral , Células HCT116 , Humanos , Concentração Inibidora 50 , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miogenina/metabolismo , Cadeias Pesadas de Miosina/metabolismo
10.
Am J Otolaryngol ; 42(6): 103079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34020179

RESUMO

OBJECTIVES: Nasal obstruction is common in patients with obstructive sleep apnea (OSA). Nonetheless, the effectiveness of isolated nasal surgery in treatment of OSA remains controversial. This study is to evaluate the subjective and objective outcome after isolated nasal surgery in patients with OSA and to determine the associated factors related to the success rate of isolated nasal surgery. METHODS: The study population consisted of 35 patients with nasal obstruction who had been diagnosed with OSA and were undergoing septoplasty and inferior turbinate reduction to correct nasal pathologies. Preoperative drug-induced sleep endoscopy was performed to evaluate the obstruction site. Patients were assessed before and after nasal surgery using subjective outcomes measures, including the Visual Analog Scale and Epworth Sleepiness Scale, as well as by overnight polysomnography. RESULTS: All patients experienced improved nasal breathing postoperatively. At 6 months postoperatively, patients exhibited significant symptomatic improvement in snoring, sleep apnea, morning headache, tiredness, and daytime sleepiness. Postoperative polysomnography revealed significant improvement in the apnea-hypopnea index, respiratory disturbance index, and percentage of time with oxygen saturation < 90%. Although the overall success rate of nasal surgery alone was 14.3%, the criteria for success were met in 50% of patients with allergic rhinitis. Furthermore, the success rate was significantly higher in patients with moderate to severe nasal obstruction than in patients with mild nasal obstruction. CONCLUSION: Among patients with OSA, those with allergic rhinitis and severe nasal obstruction are likely to have a better surgical outcome following isolated nasal surgery.


Assuntos
Rinite Alérgica , Apneia Obstrutiva do Sono/cirurgia , Adolescente , Adulto , Idoso , Criança , Endoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Septo Nasal/cirurgia , Nariz/fisiopatologia , Gravidade do Paciente , Polissonografia , Estudos Prospectivos , Respiração , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/fisiopatologia , Resultado do Tratamento , Conchas Nasais/cirurgia , Adulto Jovem
11.
Food Chem Toxicol ; 152: 112206, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887398

RESUMO

We describe the characterisation and validation of an androgen receptor (AR) transactivation assay for detection of AR agonists and antagonists using a stably transfected human prostate cancer cell line. This 22Rv1/mouse mammary tumour virus glucocorticoid knock-out cell line based AR transactivation assay was validated by criteria in Organisation for Economic Cooperation and Development Guidance Document 34 to determine if the assay performed equally well to the AR EcoScreen Assay included in Test Guideline for AR Transactivation (OECD TG 458). There was no Glucocorticoid Receptor (GR) crosstalk, and no changes in the AR DNA sequence in cells after the successful knock out of GR. Subsequently, the concordance of classifications of the 22 test chemicals was 100% in all laboratories. The AR agonistic and antagonistic inter-laboratory coefficients of variation based on log[10% effect for 10 nM DHT, PC10] and log[inhibitory response of 800 pM DHT by at 30%, IC30] from comprehensive tests were 2.75% and 2.44%, respectively. The AR agonist/antagonist test chemical classifications were consistent across AR EcoScreen ARTA assay data for 82/89%, and the balanced accuracy, sensitivity, and specificity were 83/90%, 88/100% and 78/80%, respectively. This assay was successfully validated and was approved for inclusion in TG 458 in 2020.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Vírus do Tumor Mamário do Camundongo , Camundongos , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética , Reprodutibilidade dos Testes , Ativação Transcricional/efeitos dos fármacos
12.
Cells ; 10(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925786

RESUMO

Inflammation-mediated skeletal muscle wasting occurs in patients with sepsis and cancer cachexia. Both conditions severely affect patient morbidity and mortality. Lithium chloride has previously been shown to enhance myogenesis and prevent certain forms of muscular dystrophy. However, to our knowledge, the effect of lithium chloride treatment on sepsis-induced muscle atrophy and cancer cachexia has not yet been investigated. In this study, we aimed to examine the effects of lithium chloride using in vitro and in vivo models of cancer cachexia and sepsis. Lithium chloride prevented wasting in myotubes cultured with cancer cell-conditioned media, maintained the expression of the muscle fiber contractile protein, myosin heavy chain 2, and inhibited the upregulation of the E3 ubiquitin ligase, Atrogin-1. In addition, it inhibited the upregulation of inflammation-associated cytokines in macrophages treated with lipopolysaccharide. In the animal model of sepsis, lithium chloride treatment improved body weight, increased muscle mass, preserved the survival of larger fibers, and decreased the expression of muscle-wasting effector genes. In a model of cancer cachexia, lithium chloride increased muscle mass, enhanced muscle strength, and increased fiber cross-sectional area, with no significant effect on tumor mass. These results indicate that lithium chloride exerts therapeutic effects on inflammation-mediated skeletal muscle wasting, such as sepsis-induced muscle atrophy and cancer cachexia.


Assuntos
Caquexia/prevenção & controle , Cloreto de Lítio/farmacologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/tratamento farmacológico , Sepse/tratamento farmacológico , Sepse/prevenção & controle , Animais , Peso Corporal , Diferenciação Celular , Proliferação de Células , Meios de Cultivo Condicionados , Glicogênio Sintase Quinase 3 beta/biossíntese , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Contração Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Neoplasias/complicações , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Proteínas Ligases SKP Culina F-Box/biossíntese , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
13.
Cells ; 10(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808656

RESUMO

Alternative splicing (AS) is an important posttranscriptional regulatory process. Damaged or unnecessary cells need to be removed though apoptosis to maintain physiological processes. Caspase-2 pre-mRNA produces pro-apoptotic long mRNA and anti-apoptotic short mRNA isoforms through AS. How AS of Caspase-2 is regulated remains unclear. In the present study, we identified a novel regulatory protein SRSF9 for AS of Caspase-2 cassette exon 9. Knock-down (KD) of SRSF9 increased inclusion of cassette exon and on the other hand, overexpression of SRSF9 decreased inclusion of this exon. Deletion mutagenesis demonstrated that exon 9, parts of intron 9, exon 8 and exon 10 were not required for the role of SRSF9 in Caspase-2 AS. However, deletion and substitution mutation analysis revealed that AGGAG sequence located at exon 10 provided functional target for SRSF9. In addition, RNA-pulldown mediated immunoblotting analysis showed that SRSF9 interacted with this sequence. Gene ontology analysis of RNA-seq from SRSF9 KD cells demonstrates that SRSF9 could regulate AS of a subset of apoptosis related genes. Collectively, our results reveal a basis for regulation of Caspase-2 AS.


Assuntos
Caspase 2/metabolismo , Éxons/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Caspase 2/genética , Linhagem Celular Tumoral , Humanos , Precursores de RNA/genética , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Transcrição/metabolismo
14.
Biomaterials ; 225: 119513, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31569016

RESUMO

Mesenchymal stem cell (MSC) transplantation is promising for repairing heart tissues post myocardial infarction (MI). In particular, paracrine effects of the transplanted MSCs have been highlighted to play major roles in heart regeneration by secreting multiple growth factors and immune-modulatory cytokines. Nevertheless, its therapeutic efficacy still remains low, which is strongly associated with low viability and activity of the transplanted stem cells, because the transplanted MSCs are exposed to high shear stress during injection and harsh environments (e.g., high oxidative stress and host immune reactions) post injection. In this study, we aimed to develop novel injectable MSC-delivery microgel systems possessing high anti-oxidant activities. Specifically, we encapsulated MSCs in graphene oxide (GO)/alginate composite microgels by electrospraying. To further enhance the anti-oxidizing activities of the gels, we developed reduced MSC-embedded GO/alginate microgels (i.e., r(GO/alginate)), which have the potential to protect MSCs from the abovementioned harsh environments within MI tissues. Our in vitro studies demonstrated that the MSCs encapsulated in the r(GO/alginate) microgels showed increased viability under oxidative stress conditions with H2O2. Furthermore, cardiomyocytes (CMs), co-cultured with the encapsulated MSCs in transwells with H2O2 treatment, showed higher cell viability and cardiac maturation compared to monolayer cultured CMs, likely due to ROS scavenging by the gels and positive paracrine signals from the encapsulated MSCs. In vivo experiments with acute MI models demonstrated improved therapeutic efficacy of MSC delivery in r(GO/alginate) microgels, exhibiting significant decreases in the infarction area and the improvement of cardiac function. We believe that our novel MSC encapsulation system with GO, alginate, and mild reduction, which exhibits high cell protection capacity (e.g., anti-oxidant activity), will serve as an effective platform for the delivery of stem cells and other therapeutic cell types to treat various injuries and diseases, including MI.


Assuntos
Alginatos/farmacologia , Antioxidantes/farmacologia , Células Imobilizadas/citologia , Grafite/farmacologia , Células-Tronco Mesenquimais/citologia , Microgéis , Infarto do Miocárdio/terapia , Regeneração , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Imobilizadas/efeitos dos fármacos , Citocinas/biossíntese , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Remodelação Ventricular/efeitos dos fármacos
15.
Data Brief ; 25: 104373, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31489353

RESUMO

This article contains chemical characterization and biological activity data for a novel indirubin derivative, termed LDD-1819. The detailed synthesis procedure and associated NMR data are presented. The concentration-dependent inhibition data of two biological targets, glycogen synthase kinase-3 ß and aurora kinase A are described. The following biological data are also contained in this article: 1) the cellularization of skeletal muscle myotubes by LDD-1819 or two small molecule inhibitors of glycogen synthase kinase-3 ß and aurora kinase A (BIO and reversine) and gene expression data for the myoblast markers Pax-7 and Myf5, 2) Cell viability of hTERT human immortalized fibroblasts, colon cancer cells and breast cancer cells, and 3) Western blotting analysis of full length and cleaved caspse-7, and cleaved poly (ADP-ribose) polymerase (PARP) in hTERT fibroblasts treated with LDD-1819. A schematic diagram of the biological activities of LDD-1819 is also presented. Further interpretation and discussion of these data are provided in the associated research article 'A novel indirubin derivative that increases somatic cell plasticity and inhibits tumorigenicity' (Kim et al., 2019).

16.
Bioorg Med Chem ; 27(13): 2923-2934, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31147141

RESUMO

Indirubin-based compounds affect diverse biological processes, such as inflammation and angiogenesis. In this study, we tested a novel indirubin derivative, LDD-1819 (2-((((2Z,3E)-5-hydroxy-5'-nitro-2'-oxo-[2,3'-biindolinylidene]-3-ylidene)amino)oxy)ethan-1-aminium chloride) for two major biological activities: cell plasticity and anti-cancer activity. Biological assays indicated that LDD-1819 induced somatic cell plasticity. LDD-1819 potentiated myoblast reprogramming into osteogenic cells and fibroblast reprogramming into adipogenic cells. Interestingly, in an assay of skeletal muscle dedifferentiation, LDD-1819 induced human muscle cellularization and blocked residual proliferative activity to produce a population of mononuclear refractory cells, which is also observed in the early stages of limb regeneration in urodele amphibians. In cancer cell lines, LDD-1819 treatment inhibited cell invasion and selectively induced apoptosis compared to normal cells. In an animal tumor xenograft model, LDD-1819 reduced human cancer cell metastasis in vivo at doses that did not produce toxicity. Biochemical assays showed that LDD-1819 possessed inhibitory activity against glycogen synthase kinase-3ß, which is linked to cell plasticity, and aurora kinase, which regulates carcinogenesis. These results indicate that novel indirubin derivative LDD-1819 is a dual inhibitor of glycogen synthase kinase-3ß and aurora A kinase, and has potential for development as an anti-cancer drug or as a reprogramming agent for cell-therapy based approaches to treat degenerative diseases.


Assuntos
Carcinogênese/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
17.
PLoS One ; 14(3): e0214553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921404

RESUMO

Cancer-associated fibroblasts(CAFs) participate in carcinogenesis through interaction with cancer cells. This study aimed to investigate the mechanism of cytoskeletal alteration of CAFs and its role in invasion of oral squamous cell carcinoma(OSCC).Immortalized normal fibroblasts(hTERT-hNOFs) co-cultured with OSCC cells showed myofibroblastic and senescent phenotypes like CAFs. Thus, this study substituted hTERT-hNOFs for CAFs. Next, the cytoskeletal alteration and its molecular mechanism were investigated in hTERT-hNOFs co-cultured with OSCC. As results, we found that RhoA regulated cytoskeletal organization in fibroblasts surrounding OSCC cells. Furthermore, as a downstream transcriptional factor of RhoA, YAP was mainly localized in the nucleus of hTERT-hNOFs co-cultured with OSCC. Consequently, we examined whether nuclear YAP localization of fibroblasts could influence cancer progression. YAPS127A fibroblasts manifesting nuclear localization of YAP induced cytoskeletal alteration and increased gel contractility and matrix stiffness, and thereby enhances the invasiveness of OSCC cells. In conclusion, the modification of tumor microenvironment, such as cytoskeletal change and matrix remodeling via RhoA-YAP in CAFs, modulates OSCC invasion. These understandings will provide the development of novel approaches for CAFs-based cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibroblastos Associados a Câncer/patologia , Citoesqueleto/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citoesqueleto/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Bucais/patologia , Invasividade Neoplásica , Proteínas de Sinalização YAP
18.
Toxicol In Vitro ; 58: 256-263, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30742918

RESUMO

The presence of veterinary drug residues in foods and the environment could potentially cause adverse effects on humans and wildlife. Several veterinary drugs were reported to exhibit endocrine disrupting effects via binding affinities to sexual hormone receptors such as estrogen and androgen receptors. Therefore, we confirmed the human estrogen receptor (ER) agonistic/antagonistic effects of 135 chemicals that were used as veterinary drugs in Korea by the official Organization for Economic Cooperation and Development (OECD) in vitro ER transcriptional activation (TA) assay using the VM7Luc4E2 cell line. In the case of ER agonist screening, 7 veterinary drugs (cefuroxime, cymiazole, trenbolone, zeranol, phoxim, altrenogest and nandrolone) were determined to be ER agonists. In addition, only zeranol was found to exhibit weak ER antagonistic activity. These 7 veterinary drugs, which were determined as ER agonists and/or antagonists by an OECD in vitro assay, were also found to have binding affinity to ERs. These results indicate that various veterinary drugs possess potential (anti-)estrogenic effects. However, further study is needed to determine the precise endocrine-disrupting effects of these compounds.


Assuntos
Bioensaio , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Estrogênios/farmacologia , Drogas Veterinárias/farmacologia , Criação de Animais Domésticos , Animais , Aquicultura , Linhagem Celular , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Peixes , Humanos , Gado , Organização para a Cooperação e Desenvolvimento Econômico , Ativação Transcricional , Transfecção
20.
Sci Rep ; 9(1): 493, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679508

RESUMO

Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary 'moonlighting' functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.


Assuntos
Benzamidas/farmacologia , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade , Fosfopiruvato Hidratase/antagonistas & inibidores , Triazinas/farmacologia , Células 3T3-L1 , Animais , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Fosfopiruvato Hidratase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA